the Definitive Difference

between experiments and correlational studies

- Experiment (strict)
 must have at least one manipulated variable (IV)
- Correlational Study all of the variables are measured
 - one is treated as the "predicted" variable
 - the others are treated as the "predictor" variables
- the difference is important for two reasons
 - different methods of analysis
 - different issues for interpretation

the Middle Ground

between Experiments and Correlational Studies

- Quasi-Experiment (aka "differential design") –
 a correlational study with one labile "data" variable
 and (at least) one very stable "subject" variable that
 is treated as if it had been manipulated
 - technically, it's a correlation study
 - but it's analyzed like a strict experiment...
 - ...because most of the difficulties with interpreting a correlation are unlikely

Sampling for Quasi-Expts

- Two ways to run a quasi-experiment:
 - 1) take one sample and split the data into groups after the fact in terms of the subject variable
 - label: ex-post-facto quasi-experiment
 - 2) take separate (and usually equal-sized) samples, one for level of the subject variable
 - label: planned quasi-experiment

Analyzing the results from Quasi-Expts

- these are correlational studies (by strict definition) because no variable is being manipulated so, the relationship should probably be analyzed and expressed as a point-biserial correlation but it's more typical to use a t-test and discuss the mean difference between the two groups why?
 - 1. it doesn't make a difference, statistically
 - 2. people can think about mean diffs more easily

- back to correlations, but this time a quasi-expt with X = a subject var (SV) and Y = data var (DV) example: SV = first-born (yes/no), DV = current anxiety do quasi-experiments have these problems?
- 1. reversed causation isn't plausible: i.e., DV → SV because
 - (a) current vars can't cause previous vars
 - (b) if a var has a labile cause, it can't be stable
 - (c) most subject vars are random & permanent

2. spurious isn't really an alternative: i.e., DV because

- (a) most confounds of SVs are aspects of the SV
- (b) most causes of SVs are not theoretically different from the SV, itself

(but there are exceptions to watch out for)

- things to check before treating a correlational study as a quasi-experiment:
 - 1. is the SV much more stable than the DV?
 - 2. are all of the non-random causes of the SV (effectively) the same as the SV, itself?
- more examples of (OK and not-OK) quasi-experiments right vs left handed → simple response time first-born status → anxiety first-born status → relationship quality w/parents high vs low anxiety → need-for-control male vs female → need-for-control